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This article compares three open-loop suppressed-carrier acquisition techniques
that are being considered for the Advanced Receiver II (ARX II). The algo-
rithms (full-, half-, and staggered-symbol integration) employ fast Fourier trans-
forms (FFTs) to detect the carrier-frequency offset in the presence of symbol-timing
errors. Expressions for the detection probability of the frequency offset as a func-
tion of both the symbol signal-to-noise ratio (SNR) and constant symbol-timing
errors are derived, and it is shown that the staggered-symbol integration technique
has the best performance at low received symbol SNR, making it the preferred
implementation for Deep Space Network applications.

I. Introduction

The Advanced Receiver II (ARX II) {1] uses a digi-
tal Costas loop to demodulate binary phase shift keyed
(BPSK) signals in the absence of residual carrier. Typ-
ically, frequency acquisition begins by tuning the Costas
loop’s numerically controlled oscillator (NCO) to a pre-
dicted received frequency. If the frequency difference Af
between the received and predicted frequency is on the or-
der of the one-sided Costas (closed) loop bandwidth Bp,
the frequency error is within the pull-in range of the loop,
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and acquisition is easily achieved. However, if the fre-
quency error is outside the pull-in range of the loop, some
form of frequency aiding, which has to be accomplished
in the absence of symbol synchronization, is necessary to
facilitate acquisition. One such technique is to sweep the
NCO at a sufficiently low rate so as to enable the loop
to lock up. While sweeping can be accomplished with
either a matched or a lowpass filter in the loop arms, the
latter does not require symbol synchronization but is sub-
optimum. As an example, when the 3-dB bandwidth of
the arm filter (assuming a first-order Butterworth filter) is



equal to the data rate, the degradation in loop signal-to-
noise ratio (SNR) is about 2.1 dB and 1.1 dB, when the
received symbol SNR is —3 dB and 3 dB, respectively [2].

The techniques investigated in this article perform fast
Fourier transforms (FFTs) on the phase-detector output of
Costas-type loops, which employ integrate-and-dump fil-
ters. The timing signal controlling these filters is kept con-
stant (at the predicted symbol rate) by “opening up” the
symbol-synchronization loop. It is assumed that the sym-
bol rate, but not necessarily the symbol epoch, is known
precisely. In that case, the integrators operate with a
symbol-timing offset 7, which is some unknown but fixed
fraction of the symbol interval T. The three open-loop
techniques, depicted in Figs. 1, 2, and 3, detect the carrier
by searching the magnitude spectrum of the error signal
Z(n) for a tone at 2Af Hz, since an error Af at the in-
tegrator inputs yields an error 2A f at the input to the
FFT. The spectrum is a function of many variables, in-
cluding the symbol-timing offset 7. Expressions for the
detection and outlier probabilities are derived for all the
schemes as a function of symbol SNR, symbol rate, FF'T
size, and timing offset 7.

The full-symbol scheme, depicted in Fig. 1, is consid-
ered because it is the easiest to implement. The ARX 11
uses a Costas loop to track BPSK signals. Consequently,
the full-symbol integration technique can be implemented
by simply “opening up” the Costas loop. That is, in-
stead of feeding back the loop error signal to reduce the
frequency error Af, the signal is accumulated and fast
Fourier transformed to obtain the error signal magnitude
spectrum.

One disadvantage of the full-symbol integration tech-
nique is its worsened performance when the symbol-timing
offset T is close to half a symbol period. In this case, the
integrator integrates across symbol boundaries and, as a
result, the full-symbol error signal, Z;(n) in Fig. 1, is noise
alone half the time (assuming that the probability of sym-
bol transition is one-half). This disadvantage motivates
the consideration of the half-symbol technique of Fig. 2, in
which the integration window is halved. As a result, inte-
grations across symbol boundaries occur only half as often
as the full-symbol case. Consequently, the error signal is
noise alone a quarter of the time, an improvement over
the full-symbol case. However, for small timing offsets,
the half-symbol error signal is degraded when compared
with the full-symbol error signal, because the full-symbol
technique approaches a matched filter (for non-return-to-
zero [NRZ] pulses) but the half-symbol technique does not.
As a compromise between the two schemes, consider the
staggered-symbol integration technique in Fig. 3. This

scheme uses two full-symbol integrator channels, with the
top channel delayed by half a symbol with respect to the
bottom channel. The advantage here is that the staggered-
symbol error signal Z,(n) is never noise alone, because if
the integrators in one channel straddle symbol boundaries,
the other channel is synchronous with the symbol epochs.
As a result, the composite error signal, which is the sum
of the delayed and undelayed error signals, always has sig-
nal plus noise. The disadvantage of this scheme is that
it requires more hardware and suffers from self-noise, as
will be shown. However, the self-noise is significant only
at high symbol SNRs, an unimportant region to the Deep
Space Network (DSN).

A mathematical model for these techniques is derived
in Section II; their performance in terms of the probability
of detecting the frequency difference between the received
and predicted frequency is given in Section III. Concluding
remarks are in Section IV.

1. Mathematical Model

The received suppressed-carrier BPSK signal, downcon-
verted to an appropriate intermediate frequency (IF), can
be modeled as

r(t) = V2Pd(t) sin(w;t + 6;) + n(t) (1)

where P is the received power in watts, w; is the IF radian
frequency in rad/sec, 6; is the signal phase in rad, and d(t)
is the transmitted data stream given by

+oc
d(t)y= > dip(t —kT) (2)

k=-—oc

where p(t) is the baseband NRZ pulse limited to T sec, and
dy is the term for the equally likely 1 binary symbols.
The narrow-band noise process n(t) can be expressed as

n(t) = \/Enc(t)cos(w,-t +6;) - \/ins(t) sin(w;t +6;) (3)

where n.(t) and n,(t) are statistically independent, sta-
tionary, band-limited white Gaussian noise processes with
one-sided spectral density No W /Hz and one-sided band-
width, W Hz. The signal r(t) is demodulated by in-
phase and quadrature references \/isin(wot + 65) and
V2 cos(wot + 0y ) before being integrated over a half or full
symbol, depending on the technique being implemented.
Then, the integrator outputs are multiplied to produce
the various error signals Z;(n), Zx(n), and Z,(n). Steps
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detailing the derivation of the error signals for full-, half-,
and staggered-symbol cases are in Appendices A, B, and
C, respectively. In each case, the error signal is a sinusoid
in white noise with frequency 2Af Hz (A f = (wo—w;)/27)
and amplitude A(P, 7), which is a function of the received
signal power and symbol-timing offset. Consequently, the
absolute frequency difference |Af| can be detected by ob-
serving the magnitude of the frequency spectrum of the
appropriate error signal. Only the absolute value of Af
can be detected because of the real FFT operation. Note
that the sign ambiguity problem can be resolved by off-
setting the frequency so that the error Af always has a
known sign. The probability of detection Pp of a tone in
white Gaussian noise is well known [3] and can be easily
computed as a function of the error signal SNR. The key
results of [3] are repeated in Appendix D for the reader’s
convenience. The strategy here is to express the error sig-
nal of each technique in the same form as Eq. (D-1) and
then apply the results of Appendix D in a straightforward
manner.

A. Full-Symbol Integration

A detailed analysis of the full-symbol integration tech-
nique is contained in Appendix A; the main results of the
analysis are shown below. Assuming the double-frequency
terms of the demodulated signals I(¢) and Q(¢) in Fig. 1
are fast-varying with respect to the symbol rate R,, and
the difference terms at Af = f; — f, vary slowly compared
to R,, the inphase and quadraphase arm outputs Z; ;(n)
and Zjy ,(n) are approximately given as

Z; i(n) =V PDy(n) cos(Aw(nT + T/2 4+ 7T) + ¢)
+ Nyi(n) (4)
Z; o(n) =V PDjs(n)sin(Aw(nT + T/2 4+ 7T) + ¢)

+ Npq(n) (5)
where ¢ £ 6; — 0g is the phase error, Dy(n) is the integral
of d(t) over the T-sec interval, [(n + 7)T,(n + 1 + 7)7T];
and the integrals of sin(Awt + ¢) and cos(Awt + ¢) are
approximated by the sinusoids evaluated at the interval

midpoint. The term Dj(n) is expressed mathematically
as

Ds(n)=(1—7)dy + Tdny1 (6)

where 7 is a fraction of the symbol interval T. Note that
when 7 = 1/2, symbol transitions occur in the middle of
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the integration interval, and Dy(n) = 0 half of the time
(assuming symbol transitions occur with probability one-
half). The noise samples Ny ;(n) and Ny (n) are given in
Appendix A and are shown to be zero mean, independent,
Gaussian random variables with variance

o, =03, = No/2T £ o* (7)

The error signal Z;(n) is formed by taking the product
Z;i(n)Z; 4(n). From Appendix A, one has

Z;(n) = Ag(P,7)sin(2AwnT + 204(¢)) + ny(n)  (8)
where

Ap(P, 1) = §(1-2r+272) (9)

and 6;(¢) is given by Eq. (A-6). Since the interest here is
in the magnitude spectrum of the error signal, the phase
f;(#) is not utilized but is included in Appendix A for
completeness. The effective noise ny(n) is defined as

ny(n) £ nyys(n) + npsn(n) + npan(n) (10)

where nj ,,(n) is the self-noise due to the signal-signal
product, ny 4,(n) is the noise due to the signal-noise prod-
uct, and ny ,,(n) is the noise-noise term. These noises,
given by Eqs. (A-7) through (A-9), are independent with
respect to each other and white. Consequently, ny(n) is
white, with variance

0 = 0%+ T + S a
where
0F 55 = %2(1 — ) (12)
a?)m = P(1-27 +27%)0? (13)
TG nn =" (14)

where o2 is given by Eq. (7). In deriving Eqgs. (12)-(14),
it was assumed that 7 and Aw in Egs. (A-7) through
(A-9) are unknown constants. Furthermore, d,, N;;(n),
Ny q4(n), and ¢ are assumed to be independent ran-
dom variables, where £[d,] = 0, €[dndm] = éx(n — m),
and ¢ is uniformly distributed between [0,27]. The
term &[] is the expectation, and the Kronecker delta



function 8i(n — m) is one when n = m and zero other-
wise.

Notice that when Aw = 0 and 7 = 0, Eq. (8) reduces to
the familiar Costas loop tracking-error signal (P/2)sin2¢

SNRy(r) =

+ny(n) [4], where, from Eqgs. (12)-(14), ny(n) has variance
Po? + 0%, as expected. Note also that the self-noise term
is zero when 7 = 0 or 7 = 1, as expected. The signal-to-
noise ratio of the sequence Zy(n), defined as signal power
divided by the noise power, is given by

where SNR = PT/Ng is the received symbol signal-to-
noise ratio. For 7 = 0, Eq. (15) simplifies to

SNR

B. Half-Symbol Integration

The half-symbol integration technique, shown in Fig. 2,
is similar to the full-symbol integration technique, with the
inphase and quadraphase integrators now integrating over
the T'/2-sec interval, [(n+27)T/2,(n+ 1+ 271)T/2)], where
7 is a fraction of T/2 sec. Breaking up the integration
over a symbol into two halves results in symbol transition
boundaries occurring in the middle of every other integra-
tion interval; as a result, they occur half as many times as
in the full-symbol case. One intuitively expects worst-case
performance (with the transition boundary in the middle
of the integration interval) in the half-symbol case to be
better than the full-symbol case. However, when there is
perfect symbol timing, half-symbol integration is expected
to perform worse than full-symbol integration.

Following similar steps as in Egs. (4) and (5), the fol-
lowing approximate expressions are obtained for Zj ;(n)
and Zj 4(n):

Zni(n) = VPDy(n) cos(Aw(nT/2 + T/4 + 7T) + ¢)
-+ N},,,‘(n) (17)
Zh o(n) = VPDy(n)sin(Aw(nT/2 + T/4 + 7T) + )

+ Np o(n) (18)

where Dy (n) is the integral of d(t) over the T/2-sec inter-
val, [(n +27)T/2, (n+ 1+ 27)T/2]. lence,

_ A?(P,T) _ (1-—2T+2T2)2 (15)
2(7)2, - 41 — 1)272 4+ (1 — 27 + 272)(4/SNR) + (2/SNR?)
dz, n even
Di(n) = {(f_ 297)dazs + 27dag, nodd  (19)

where even n’s represent the integration over the half of
a symbol without transitions and odd n’s represent the
integration over the half with transitions. Notice that in
the worst case, where 7 = 1/4, Dy(n) = 0 a quarter of
the time. The terms Nj ;(n) and Np 4(n) in Egs. (17) and
(18) can also be expressed as in Eqgs. (A-1) and (A-2) with
T replaced by T/2 and 7 replaced by 2r. Consequently,
Ny i(n) and Nj, ¢(n) are zero mean, independent, Gaussian
random variables with variance

ohi = 0'121.4 = No/T = 20° (20)

As shown in Fig. 2, the half-symbol error signal is
formed by summing two consecutive samples of the prod-
uct Zp i(n)Zy 4(n). From Eq. (B-8), Zx(n) is given as

Zi(n) = Ap(P,7)sin(2AwnT + 20,(¢)) + na(n) (21)
where

Ap(P,7) = 2(1 — 27 + 47%) (22)

and 60,(#) is given by Eq. (B-11). The effective noise in
Eq. (21) is
na(n) 2 naea(1) + 1 a0 () + 24 0n(n) (23)

where nj 45(n), nhsn(n), and npaa(n) as given by Egs.
(B-12) through (B-14) are independent and white. As a
result, ny(n) is also white, with variance

2 __ 2 2 2
Oh = Uh,ss + Uh,.m + Uh,nn (24)

where
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2 P2

Ohss = T(l - 27‘)27'2 (25)
(7,2,_‘,,l =P(l-2r+ 47r%)o? (26)
Oh on = 20 (27)

Note that when tracking with perfect symbol timing
(ie., Aw = 0 and 7 = 0), the half-symbol error signal
reduces to (P/2) sin 2¢ plus noise, with variance Pa? +20*
as expected. The signal-to-noise ratio of Z(n) is given by

SNRh(T)

_ (1—21’—{-47’2)2
T 4(1—27)272 4 (1 — 27+ 472)(4/SNR) + (4/SNR?)

(28)

which, when 7 = 0, reduces to

SNR

SNRO) = 5575wk

(29)

Note that at high symbol SNRs (i.e., ignoring squaring
losses), SN R,(0) and SNR;(0) are equal because of the
accumulation over two half-symbols in Fig. 2.

C. Staggered-Symbol Integration

Staggered-symbol integration has two full-symbol inte-
grator channels, with one channel delayed by half a symbol
with respect to the symbol-transition boundary. Unlike
the full- and half-symbol integration techniques, the sig-
nal component of the staggered-symbol error signal Z,(n),
which is the sum of the delayed and undelayed error sig-
nals Z4(n) and Zy(n), is always nonzero. For example,
when there is perfect symbol timing, the undelayed chan-
nel never integrates across symbol-transition boundaries
and the delayed channel always does. As a result, Z,(n)
always has a nonzero signal portion, whereas the signal
part of Z4(n) is zero half the time. When symbol timing
is off by half a symbol, the delayed channel-integration in-
tervals are synchronous with transition boundaries and the
error signal scenario is reversed. In view of the two sce-
narios described above, identical performance is expected
when symbol timing is perfect or off by half a symbol.
Exact expressions for the error signals are derived in Ap-
pendix C and also shown below. The undelayed channel
in Fig. 3 is the same as the full-symbol integration shown
in Fig. 1. Hence, Z,(n) in Fig. 3 is identical to the full-
symbol error signal Z;(n) given by Eq. (8). The delayed
channel integrates the demodulated signal over the T-sec
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interval, [(n + % + )T, (n + % + rT]. Consequently, the
delayed inphase and quadraphase integrator outputs have
the same form as the undelayed outputs given by Eqs. (4)
and (5), namely

Z4i(n) = VPDy(n)cos(Aw(nT + T + 7T) + ¢)
+ Nd‘;(n) (30)
Zaq(n) = VPDy(n)sin(Aw(nT + T + 1T) + ¢)

+Nd,q(n) (31)

where Dg(n) is the integral of d(t) over the delayed inter-
val, and the integral of sin(Awt + ¢) and cos(Awt + ¢)
over the same interval is approximated by the sinusoid
evaluated at the interval midpoint. The quantity Dga(n) is
expressed mathematically as

Dy(n) = (% - r) d, + (% + T) dnt1 (32)

where 7 is a fraction of T/2 sec. The noises Ny ;(n) and
Ng 4(n) are given by Eqgs. (A-1) and (A-2), with the limits
of integration changed to that of the delayed case. From
Eq. (C-1), one has

Z4(n) = Ag(P,7)sin(2AwnT + 204(¢)) + na(n) (33)

where the amplitude of Z4(n) is given by
P(1 2
Aa(P 1) = 5 (Z -7 ) (34)

and the phase 8,(¢) is defined by Eq. (C-4). The eflective
noise ng4(n) is given by

na(n) 2 ndss(n) + nasn(n) + ndnn(n) (35)

where ng,,(n) and ng,n(n) given by Eqs. (C-5) through
(C-T) are uncorrelated and white. Consequently, n4(n) is
white, with variance

2 2 2 2
04 = 0d|as + T4 sn + Tdnn (36)

where

P2 (1
U:‘;)"s = T(z—‘r2> (37)



1
ag’m = (-2— + 27’2) a? (38)

Ug,nn = ‘74 (39)

The staggered-symbol integration error signal Z,(n) is
the sum of Z,(n) + Z4(n). As shown in Appendix C, it

can be written as
Zy(n) = A,(P, 7)sin(2AwnT + 26,(¢)) + ns(n)  (40)
where the amplitude

A (P,7) = ;(%—27’-{—41'2) (41)

and 6,(¢) is given by Eq. (C-12). The effective noise
ns(n) = ny(n) + ng(n) is given by Egs. (C-13) through
(C-17). Note that although n,(n) and ng(n) are white,
ns(n) is correlated because of the cross-correlation between
ny(n) and ng4(n), due to the half-symbol delay. In partic-
ular, n, sy and n, ,n, as given by Egs. (C-15) and (C-16)

(3/2 — 27 4 4r%)?

are correlated, whereas n, ,, given by Eq. (C-14) is white.
From Appendix C, the average power of n,(n) (average
power is denoted by o2 for consistency in notation) is given
as

U.? = 03,35 + ag,sn + asz,nn (42)
where
p 1 i
0;"'” = T(Z+T—2TZ) (43)
02 ;= P(2-37+67%)0” (44)
0% un = 30" (45)

Note that unlike the previous two techniques, the self-
noise is nonzero even when tracking with perfect sym-
bol synchronization. Furthermore, since it increases with

_signal power, staggered-symbol performance can be ex-

pected to worsen with increasing received symbol SNR.
The staggered-symbol signal-to-noise ratio is given by

SNR(7) = ;

which, when 7 = 0, reduces to

9SNR

SNR,(0) =
k. (0) SNR+32+20/SNR

(47)

lIl. Numerical Results and Discussion

This section presents curves relating the error signal
SNR to the symbol SNR for a fixed r. The probability
of detecting the frequency error 2Af is computed, and a
numerical example showing how to use the curves is also
given.

Figure 4 depicts the SNR degradation (denoted by D)
of the different schemes considered versus the timing offset
7. Degradation is defined as the reduction in error signal
SNR relative to the SNR of the error signal of a Costas
loop with 7 = 0. The full-, half-, and staggered-symbol

(1/4+ 71— 272)2 + (2— 37 + 672)(4/SNR) + 5/SN R?

degraded SNRs are given below, where the SNR of the
Costas loop error signal SN R;(0) is given by Eq. (16) and
SNRy(r), SNRu(7), and SN R,(r) are given by Egs. (15),
(28), and (46). Therefore

_ SNR(7)
Di) = xR,

_ (2/SNR? + 4/SNR)(1 — 2r + 2r%)*

T 2JSNRI+4(1—7)2r2 +4(1 — 27 + 27%)/SNR
(48)

_ SNRy(7)
Dp(r) = SNE,(0)
_ (2/SNR? + 4/SNR)(1 — 21 + 47?)?

T 4/SNRZ+4(1-2r)Pr2 +4(1 - 21 +472)/SNR
(49)
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_ SNR,(7)

b1 = 38R, ()

_ (4/SNR? + 8/SNR)(3/2 — 27 + 47?)?
T 5/SNRZ+4(1/4+ 7 —27%) + 4(2 — 37 + 679)/SNR

(50)

Figure 4 depicts Dy, Dy, and D, versus 7 for various
symbol SNRs. Figure 4(a), with SNR = —10 dB, Fig. 4(b),
with SNR = -5 dB, and Fig. 4(c), with SNR = 0 dB,
indicate that, except for a very small region near 7 = 0,
the staggered-symbol technique has the best performance
for low symbol SNR; Figure 4(d), with SNR = 5 dB, and
Fig. 4(e), with SNR = 10 dB, suggest that the half-symbol
technique is best for high symbol SNR under a worst-case
scenario (i.e., 7 = 1/4). The reference SNR, SN R;(0), is
depicted versus symbol SNR in Fig. 5. Tigure 5, together
with Fig. 4, relate received symbol SNRR to error-signal
SNR of the various schemes.

Figures 6(a) and 6(b) depict simulation results for the
spectrum of the full-symbol error signal Zy(n) when the
frequency offset Af = 10 Hz, the symbol rate R, =
1000 Hz, and the symbol SNR = 10 dB for 7 = 0, shown in
Fig. 6(a), and 7 = 0.3, shown in Fig. 6(b). Consistent with
the earlier assumption, the frequency offset was chosen to
be much smaller than the symbol rate. In both cases, a
strong signal component was observed at 20 Hz, indicating
a Af of £10 IIz, with the strongest corresponding to the
case T = 0, as expected.

The outlier probability ¢, defined as the probability
that the magnitude of any FFT noise-only bin exceeds the
magnitude of the signal-plus-noise bin, is given by 1 — p,
wlere p is the probability of detecting the real tone and
is given by Eq. (D-3). Note that the detection probability
given by Eq. (D-3) is based on observing M/2 + 1 cells of
the magnitude spectrum of an Af-point FFT. This is be-
cause the FI'T operator in Fig. 1 operates on a real input,
which results in A7/2 41 distinct cells of the Af total cells.
Figure 7 depicts ¢ versus SNR where SNR corresponds to
the signal-to-noise ratio at the FFT input (i.e., the error
signal SNR). Strictly speaking, Fig. 7 applies only when
the noise prior to the FFT operation is white and Gaus-
sian. In the case described here, the noise component of
the error signal ny(n), nj(n), or ny(n) is not Gaussian, but
it is approximated as such because in a hardware imple-
mentation the processing rate is reduced froin the symbol
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rate to a more appropiate loop update rate by accumulat-
ing over N symbols. As a result, the Gaussian approxi-
mation is justified by the Central Limit Theorem for large
N. It was shown earlier that ny(n) and ny(n) are white,
whereas n,(n) is correlated with its adjacent samples. The
curves in Fig. 7 are used for the staggered-symbol case be-
cause, for large N, the correlation between adjacent blocks
of N samples of n,(n) will be small enough so that noise
samples going in to the FFT operator can be considered
to be white.

The following example illustrates how to use the curves
presented in this section to compute probability of detec-
tion. Suppose that the received symbol SNR.is 0 dB. Then,
from Fig. 5, the Costas loop error-signal SNR, SN R;(0),
is —11 dB. Assuming that the timing offset 7 = 0.2, then,
from Fig. 4(c), D;(0.2), Dx(0.2), and D,(0.2) are 2.4 dB,
3.1 dB, and 1.3 dB, respectively. As a result, the signal-
to-noise ratios of the various error signals SN R;(0.2),
SNR,(0.2), and SNR,(0.2) are —13.4 dB, —14.1 dB, and
—12.3 dB, respectively. From Fig. 7, the correspond-
ing outlier probabilities for an M = 1024-point FFT are
0.12x1072,0.52x 1072, and 0.54 x 10~ for the full-, half-,

and staggered-symbol cases, respectively.

To obtain the outlier probability when 7 is not known,
the above calculation is performed for all 7, or a reason-
able number of 7, and the probabilities are averaged. For
instance, when the symbol rate R, is not known precisely,
and the symbol-rate error AR, is small compared to R;,
the symbol rate slips slowly with respect to the integration
interval, and 7 can be modeled as a uniform random vari-
able. On the other hand, if AR, is not small, then T can
be modeled as a Gaussian random variable. Also note that
the results above are limited to the case that Af << R,
and the methods discussed here will not be applicable to
the case of low data rates and large frequency errors (i.e.,
when Af = R,). In the latter case, it may be better to
replace the integrators in Figs. 1-3 with lowpass filters.

1V. Conclusion

This article compares three open-loop, suppressed-
carrier acquisition techniques (full-; half-, and staggered-
symbol integration) which employ FFTs to detect the car-
rier frequency offset. The staggered-symbol integration
technique is shown to have the least degradation at low
symbol SNRs, making it the preferred technique for deep-
space applications.
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Fig. 4. Signal-to-noise degradation versus symbol timing error for various symbol SNRs.
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Appendix A

Derivation of the Full-Symbol Error Signal

The full-symbol integration technique is shown in
Fig. 1. As noted in Section II of the main text, r(t) is the
received suppressed-carrier BPSK signal downconverted to
an appropiate II' frequency. Hence, it can be represented
mathematically by Egs. (1)-(3). Referring to Fig. 1, r(t)
is first demodulated and then integrated over a moving T-
sec window to produce the sequences Z; ;(n) and Z; ,(n),
as given by Egs. (4) and (5). The noise samples Nj;(n)
and Ny ,(n) are given by

Nyi(n) =~ sin(Aw(nT + T/2 + 7T) + ¢)

1 (n+147)T
X = ng(t)dt
T [n-{-'r)T ‘

— cos(Aw(nT +T/2+ 1T) + ¢)

1 /(n+1+r)T
X = n,(t)dt
T (n+7)T ( )

(A-1)

and

Ny q(n) =cos(Aw(nT + T/2+ tT) + ¢)

l/(n+1+T)T
X = n.(t)dt
T Jintryr

—sin(Aw(nT +T/2+ 1T) + )

1 (n+1+4+7)T
X = n,(t)dt

(A-2)
T (n4+7)T

and are Gaussian with zero mecan and variance

0? = No/2T. The error signal Z;(n) is given by

Zi(n) = Z;i(n)Z1,4(n) = s4(n) + ny(n) (A-3)
where the signal part of Z,(n) is defined as
s;(n) = E[Z4(n)/9]

= Ay(P,7)sin(2AwnT +20;(¢))  (A-4)
where

Ay(P7) = §(1—27+2r?) (A-5)
and

8,(¢) = AwT (r + %) + (A-6)

The effective noise ny(n) can be expressed as in
Eq. (10), where

nsss(n) = P(l — 7)rdadnyy

x sin(28wnT +20(¢)) (A7)
ns.en(n) = VPD;(n)Ny(n) (A-8)
nfnan(n) = Npi(n)Nyg(n) (A-9)
and Ny(n) in Eq. (A-8) is defined as
Ny (n) 2Ny (n) cos(AwnT +65())
+ Nyi(n)sin(AwnT + 6;(¢))  (A-10)
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Appendix B

Derivation of the Half-Symbol Error Signal

Referring to Fig. 2, the signal Zj(n) is the product of
the inphase and quadraphase integrate-and-dump outputs.
Hence

Zh(n) = Zn i(n) 2 ¢(n) = s3(n) 4+ njy(n) (B-1)

where Zj j(n) and Zj 4(n) are given by Eqgs. (17) and (18),
and s} (n) £ £[Z;(n)/¢] becomes

£sin(2awn(T/2) + 26,(4)), n even

sp(n) = ¢ £((1-27)% +27%) (B-2)
x sin(2Awn(T/2) + 26}(¢)), n odd
and
, 1
W(P) = AwT | 7+ 7 +¢ (B-3)
The effective noise in Eq. (B-1) is defined as
(1) = 0 4o (n) + 1 4n(n) + 1 () (B-4)
where
0, n even
TL;I’”(H): P(l_QT)QTdn_;l_dn_gi
x sin(2Awn(T/2) + 260'($)), n odd
(B-5)
\/]_Jd%Nh(n), n even
nh an(n) = { VP((1 = 27)dass (B-6)
+2‘rd3¥)N(n), n odd
W an () = Nii(n) Ni g (n) (B-7)

where Nj,(n) is as defined in Eq. (A-10), with 7" replaced
by T'/2 and 6;(¢) replaced by 6} (¢).
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Note that the preceding signal and noise expressions
depend on whether one is working with the early (even
n’s) or late (odd n’s) half of a symbol. Summing two
consecutive samples of Z} (n) removes this dependency and
simplifies the computation of the error signal statistics.
Hence, using the approximations sin(AwnT) ~ AwnT and
cos(AwnT) ~ 1 when AwT << 1, one obtains

Z(n) = 51Z4(20) + Z 20+ 1)] = sn(n) + o) (B-5)
and
sn(n) = %[s’(?n) +s'(2n + 1)]
= An(P,7)sin(2AwnT + 20,(¢)) (B-9)
where
P 2
An(P,7) = (1= 27 + 47%) (B-10)

1 BAwWT
On(9) = AwT(‘r—i— 41) + o+ -Q—tan_1< 1+WB ) (B-11)

where B = 1 — 47 + 872. The effective noise ny(n) in
Eq. (B-8) is given by Lq. (23), where

1
Tl};_,,(ﬂ) = 5[”?1,:3(271) + n;l,u(Qn + 1)]
= P(1 = 27)1dpdnty

x sin(2AwnT + 20, (¢) + AwT)  (B-12)

—

nh,sn(n) =3 [n;l'm(Qn) + n'hym(Qn -+ 1)]

[\

“|5

[anh(Qn)

+ (1 = 20)dy + 27dp g1 ) Na(20 + 1)]

(B-13)



[n;‘,nn(gn) + 1 (20 + 1)] where Nj(n) is defined as

o —

nh,nn(n) =
[Nni(2n)Nn 4(2n) Na(n) = Noq(n) cos(BwnT/2 + 0,(9))

o=

+ Npi(2n + D)Npg(2n + 1)) (B-14) + Ny .i(n)sin(AwnT/2 + 6},(¢)) (B-15)
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Appendix C

Derivation of the Staggered-Symbol Error Signal

The delayed channel error signal is given by

Za(n) = Z4i(n)Za4(n) = sa(n) + na(n) (C-1)
where the signal part of Z4(n) is defined as
sa(n) = €[Za(n)/9]
= Ag(P,7)sin(2AwnT + 204(¢))  (C-2)
where
Aq(P,7) = ?(% + 2r2> (C-3)
04(6) = AwT(r+ 1)+ ¢ (C-4)

The effective noise n4(n) in Eq. (C-1) is given by
Eq. (35), where

ng,ss(n) = P(i— - T2> dpdni

x sin(2AwnT + 204(6)) (C-5)
ndsn(n) = VPDy gNu(n) (C-6)
Nann(n) = Nai(n)Nag(n) (C-T)
and
Ng(n) = Ngg(n)cos(AwnT + 0a(4))
+ Ny g(n)sin(AwnT + 04(¢))  (C-8)

Except for the subscripts u and f, the undelayed chan-
nel error signal Z,(n) in Fig. 3 is the same as the full sym-
bol error signal Z;(n) derived in Appendix A, and given by
Egs. (A-3) through (A-10). Hence, the staggered-symbol
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error signal Z,(n), which is the sum of the delayed and
undelayed error signals, is given by

Zs(n) = Za(n) + Zu(n) = s5(n) + ns(n) (C-9)

and

ss(n) = sa(n) + su(n)
= A,(P,7)sin(2AwnT + 26,(¢))  (C-10)

where

A, (P,T) = g(g—27+47'2> (C-11)

1 1 A AwT
s = T - = Ll ekl
0,(¢) = Aw (T+2>+¢+2tan <Au+Ad>

(C-12)

The amplitudes A, and A4 are given by Eqgs. (A-5) and
(C-3), and the effective noise n,(n) can be expressed as

na(n) = () + na(n)
2 n,.(n) + Ns,sn(n) + g an(n) (C-13)
where

ns,aa(n) - nd,as(n) + nu,”(n)

= (% =+ T—QTZ) dndn+1

x sin(2AwnT + 20'(¢)) (C-14)
N5 sn(n) = nasn(n) + Ny, sn(n)
= VP[Da(n)Na(n)

+ Du(m)No(n)] (C-15)



na,nn(n) = nd,nn(n) + nu,nn(n)

= Ngi(n)Na,(n) + Nu,i(”)Nd,q(n)
(C-16)

The phase 84(¢) in Eq. (C-14) is given by

f . _l_ l -1 BlAwT
8l (p) = AwT(T+ 2) +é+ 5 tan (——32 T B1> (C-17)

where B; = 0.25 — 72 and By = (1 — 7)7, and the noises
Ng(n) and Ny(n) are given by Egs. (C-8) and (A-10).

Unlike the previous two techniques, the noises due to
the signal-noise product and noise-noise product for this
technique are nonwhite, with auto-correlation given by

Ryn(n) = P(2 =37+ 67%)0?6(n)

+P(%+-;—T—7'2) (6(n—1)+é(n+1))

(C-18)
5 4 1 4
Rpn(n) = 50’ é(n) + Za’ (6(n -1 +é(n+1)) (C-19)

From the last two equations, the average power of ng sn
and n4 nn is given as

02 = P(2-3r+67%)0" (C-20)
03 nn — gaA (C'Ql)
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Appendix D

Detection Probability of a Tone in White Noise

This appendix briefly rederives the results of {3] which
apply to this article. Suppose

z(1) = Asin(2n fily + 0) + n(i) (D-1)

where f, = 1/7, is the rate at which the continuous pro-

cess 2(t) was sampled, and the n(i)’s represent indepen-

dent Gaussian random variables with zero mean and vari-

ance o2, Let X (k) be the M-point discrete Fourier trans-
form of z(z). That is,

1 j2mik
X(k) = i ; z(7) cxp(—] v ), k=0,1,..,M-1

(D-2)

Since z({) is real, there are M/2 4+ 1 distinct cells of the
M total cells. Then, upon observing the A/2 + 1 distinct
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cells of the magnitude spectrum of X (k), the probability
of detecting the real tone is given by [3] to be

o0
p= / QMr(SNR)ye—M‘(SNH)(y7+1)
0

x Io[2M'y(SN It)]

—M’(S‘NR)]M’d

x [1 = y?e Yy (1)-3)

where M’ = M/2 and where SNR = %;, and where £y(+)
is the modified Bessel function of the first kind.

The outlier probability ¢ = 1 — p is shown in Fig. 7
as a function of SNR. Further note that Iig. 7 is slightly
different than the one presented in [3], because this article
considers real FF'T's whercas [3] applies to complex FI7I's,



